6 resultados para host response

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

60.00% 60.00%

Publicador:

Resumo:

When an appropriate fish host is selected, analysis of its parasites offers a useful, reliable, economical, telescoped indication or monitor of environmental health. The value of that information increases when corroborated by another non-parasitological technique. The analysis of parasites is not necessarily simple because not all hosts serve as good models and because the number of species, presence of specific species, intensity of infections, life histories of species, location of species in hosts, and host response for each parasitic species have to be addressed individually to assure usefulness of the tool. Also, different anthropogenic contaminants act in a distinct manner relative to hosts, parasites, and each other as well as being influenced by natural environmental conditions. Total values for all parasitic species infecting a sample cannot necessarily be grouped together. For example, an abundance of numbers of either species or individuals can indicate either a healthy or an unhealthy environment, depending on the species of parasite. Moreover, depending on the parasitic species, its infection, and the time chosen for collection/examination, the assessment may indicate a chronic or acute state of the environmental health. For most types of analyses, the host should be one that has a restricted home range, can be infected by numerous species of parasites, many of which have a variety of additional hosts in their life cycles, and can be readily sampled. Data on parasitic infections in the western mosquitofish (Gambusia affinis), a fish that meets the criteria in two separate studies, illustrate the usefulness of that host as a model to indicate both healthy and detrimentally influenced environments. In those studies, species richness, intensity of select species, host resistance, other hosts involved in life cycles, and other factors all relate to site and contaminating discharge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epizootics of Eimeria funduli involved estuarine killifishes (Fundulus grandis, F. pulvereus, F. similis, and F. heteroclitus) in Mississippi, Alabama, and Virginia. All of more than 500 specimens examined of F. grandis from Mississippi during 1977 through 1979 had infections, regardless of age, sex, or season collected. Oocysts occurred primarily in the liver and pancreas, replacing up to 85% of both those organs. Infrequent sites of infection were fatty tissue of the body cavity, ovary, intestine, and caudal peduncle. Living fish did not discharge oocysts. Eimeria funduli is the first known eimerian to require a second host. To complete the life cycle, an infective stage in the grass shrimp Palaemonetes pugio had to be eaten. In 6-mo-old killifish reared in the laboratory at 24 C, young schizonts were first observed in hepatic and pancreatic cells 5 days post feeding, followed by first generation merozoites by day 10, differentiation of sexual stages during days 15 to 20, fertilization between days 19 and 26, sporoblasts from days 25 to 30, and sporozoites about day 60. Unique sporopodia developed on sporocysts by day 35 when still unsporulated. Temperatures of 7 to 10 C irreversibly halted schizogony. Both schizogony and sporogony progressed slower as age of host increased. When infective shrimp in doses ranging from 1 to 10% of a fish's body weight were eaten, the level of intensity of resulting infections did not differ significantly. Pathogenesis followed a specific sequence, with the host response apparently unable to contend with extensive infections as seen typically in nature and in our experiments. Premunition was indicated. When administered Monensin® orally, infected fish exhibited a reduction in oocysts by 50 to 70% within 20 days as compared with untreated fish. Furthermore, infected killifish maintained exclusively on a diet of TetraMin® for 3 mo completely lost their infections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A white shrimp from Galveston, Texas, is the first reported case of a crustacean internally infected by a diatom. Even though more than one species occurred in debris on and between gill filaments, only individuals of Amphora sp. occurred within gills. To determine if a related diatom would easily reproduce within the shrimp and cause. a host response similar to that observed, we injected cultured specimens of A. coffaeformis into white shrimp. Under the experimental conditions, individuals of that species did not divide, but they elicited an extensive melanistic host-response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In practice, epizootiology deals with how parasites spread through host populations, how rapidly the spread occurs and whether or not epizootics result. Prevalence, incidence, factors that permit establishment of infection, host response to infection, parasite fecundity and methods of transfer are, therefore, aspects of epizootiology. Indeed, most aspects of a parasite could be related in sorne way to epizootiology, but many of these topics are best considered in other contexts. General patterns of transmission, adaptations that facilitate transmission, establishment of infection and occurrence of epizootics are discussed in this chapter. When life cycles are unknown, little progress can be made in understanding the epizootiological aspects of any group of parasites. At the time Meyer's monograph was completed (1933), intermediate hosts were known for only 17 species of Acanthocephala, and existing descriptions are not sufficient to permit identification of two of those. Laboratory infections of intermediate hosts had apparently been produced for only two species. Study at that time was primarily devoted to species descriptions, host and geographical distribution, structure and ontogeny. Little or nothing was known about adaptations that promote transmission and the concept of paratenic hosts was unclear. In spite of the paucity of information, Meyer (1932) summarized pathways of transmission among principal groups of hosts, visualized the relationships among life cycle patterns for the major groups of Acanthocephala, and devised models for the hypothetical origin of terrestrial life cycles from aquatic ones. Nevertheless, most of our knowledge regarding epizootiology has been recently acquired.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calyptospora funduli has a broad host specificity, infecting at least 7 natural and 10 additional experimental definitive hosts, all atheriniform fishes within 5 families, but most in the genus Fundulus. Barriers, apparently innate ones, prevent any development of C. funduli in perciform fishes but allow incomplete or abnormal development of the parasite in a few unnatural atheriniform hosts. In the freshwater species Fundulus olivaceus and Fundulus notti, these abnormalities consisted of asynchronous development, degeneration of the parasite in early stages of development, and the formation of numerous macrophage aggregates. Rivulus marmoratus has the ability to eliminate infections with a granulomatous inflammatory response. Additional barriers that limit natural infections of C. funduli in other hosts include feeding behavior, environmental conditions, and geographic isolation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pathogenesis of South American and North American myxoma viruses was examined in two species of North American lagomorphs, Sylvilagus nuttallii (mountain cottontail) and Sylvilagus audubonii (desert cottontail) both of which have been shown to have the potential to transmit the South American type of myxoma virus. Following infection with the South American strain (Lausanne, Lu), S. nuttallii developed both a local lesion and secondary lesions on the skin. They did not develop the classical myxomatosis seen in European rabbits (Oryctolagus cuniculus). The infection at the inoculation site did not resolve during the 20-day time course of the trial and contained transmissible virus titres at all times. In contrast, S. audubonii infected with Lu had very few signs of disseminated infection and partially controlled virus replication at the inoculation site. The prototype Californian strain of myxoma virus (MSW) was able to replicate at the inoculation site of both species but did not induce clinical signs of a disseminated infection. In S. audubonii, there was a rapid response to MSW characterized by a massive T lymphocyte infiltration of the inoculation site by day 5. MSW did not reach transmissible titres at the inoculation site in either species. This might explain why the Californian myxoma virus has not expanded its host-range in North America.